- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- + 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某登山队登珠穆朗玛峰,在海拔8000m时测得温度是-47℃,在到达一号营地后测得温度是-20℃,已知该地区海拔高度每增加100m气温约下降0.6℃,问一号营地的海拔高度约是多少米?
甲班学生48人,乙班学生44人,要使两班人数相等,设从甲班调x人到乙班,则得方程()
A.48-x=44-x | B.48-x=44+x |
C.48-x=2(44-x) | D.以上都不对 |
小明用172元钱买了两种书为“希望工程”募捐,共10本,单价分别为18元、10元,每种书小明各买了多少本?若设单价为18元的书买了
本,可列方程为_________________.

将一些课外书分给某班学生阅读,若每分2本,则剩余35本,若每人分4本,则还差25本,设这个班共有x名学生,则可列方程()
A.2x+35=4x+25 | B.![]() | C.2x-35=4x+25 | D.2x+35=25-4x |
甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为_____________.
《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
学校抽查七、八年级共590人分别背诵“社会主义核心价值观”与“校园文明六个好”,其中抽查背诵“社会主义核心价值观”人数是背诵“校园文明六个好”人数的2倍多56人.设抽查背诵“校园文明六个好”的人数为x人,则可列方程_______________.
植树节甲班植树的株数比乙班多20%,乙班植树的株树比甲班的一半多10株,若乙班植树x株.
(1)列两个不同的含x的代数式表示甲班植树的株数.
(2)根据题意列出以x为未知数的方程.
(3)检验乙班、甲班植树的株数是不是分别为25株和32株.
(1)列两个不同的含x的代数式表示甲班植树的株数.
(2)根据题意列出以x为未知数的方程.
(3)检验乙班、甲班植树的株数是不是分别为25株和32株.