- 数与式
- 方程与不等式
- + 一元一次方程
- 从算式到方程
- 解一元一次方程
- 实际问题与一元一次方程
- 二元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
《算法统宗》是我国明代的一部数学名著,记载了很多有趣的问题.其中有一道“李白饮酒”的数学诗谜,原诗如下:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮斗九.相逢三处店,饮尽壶中酒.”诗文大意为:李白去郊外春游,带了一壶酒,每次遇见朋友,就先到酒馆里将壶里的酒增加一倍,然后喝掉其中的19升酒,这天他共三次遇到了朋友,恰好把壶中的酒喝光.根据诗中的叙述,若我们设壶中原有x升酒,可以列出的方程为_____.
某机械厂加工车间有51名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套.问需要安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
1952个正整数1,2,3,4,…,1952按如图方式排列成一个表:

(1)如图,用一正方形方框任意框住4个数,记左上角的一个数为x,当被框住的4个数之和等于358时,x的值为多少?
(2)如(1)中方式,能否框住这样的4个数,它们的和等于2438?若能,则求出x的值;若不能,则说明理由.
(3)从左到右,第1到第6列各列数之和分别记为a1,a2,a3,a4,a5,a6,则这6个数中,最大数与最小数之差等于 .(直接填出结果,不写计算过程)

(1)如图,用一正方形方框任意框住4个数,记左上角的一个数为x,当被框住的4个数之和等于358时,x的值为多少?
(2)如(1)中方式,能否框住这样的4个数,它们的和等于2438?若能,则求出x的值;若不能,则说明理由.
(3)从左到右,第1到第6列各列数之和分别记为a1,a2,a3,a4,a5,a6,则这6个数中,最大数与最小数之差等于 .(直接填出结果,不写计算过程)
已知x=9是关于x的方程3x﹣7=2x+m的解
(1)求m的值;
(2)当n=3时,求m2﹣2mn+n2和(m﹣n)2的值;
(3)①由第(2)小题的结果,你能得到什么结论?
②利用你得到的结论,可知:(a+3)2= .
(1)求m的值;
(2)当n=3时,求m2﹣2mn+n2和(m﹣n)2的值;
(3)①由第(2)小题的结果,你能得到什么结论?
②利用你得到的结论,可知:(a+3)2= .
如图,在数轴上点A表示数a,点C表示数c,且|a+10|+(c﹣20)2=0.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.

(1)求a、c的值;
(2)已知点D为数轴上一动点,且满足CD+AD=32,直接写出点D表示的数;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A、C在数轴上运动,点A、C的速度分别为每秒3个单位长度、每秒4个单位长度,运动时间为t秒:
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB﹣m×BC的值不随时间t的变化而改变,请求出m的值.

(1)求a、c的值;
(2)已知点D为数轴上一动点,且满足CD+AD=32,直接写出点D表示的数;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A、C在数轴上运动,点A、C的速度分别为每秒3个单位长度、每秒4个单位长度,运动时间为t秒:
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB﹣m×BC的值不随时间t的变化而改变,请求出m的值.
某市居民使用自来水按如下标准收费(水费按月缴纳):
(1)当
时,某用户一个月用了
水,求该用户这个月应缴纳的水费;
(2)设某户月用水量为
立方米,当
时,求该用户应缴纳的水费(用含
、
的整式表示);
(3)当
时,甲、乙两用户一个月共用水
.已知甲用户用水量超过了
,设甲用户这个月用水如
,试求甲、乙两用户一个月共缴纳的水费.(用含
的整式表示)
户月用水量 | 单价 |
不超过![]() | ![]() ![]() |
超过![]() ![]() | ![]() ![]() |
超过![]() | ![]() ![]() |
(1)当


(2)设某户月用水量为




(3)当




