- 数与式
- 平方差公式
- 完全平方公式
- + 完全平方式
- 求完全平方式中的字母系数
- 完全平方公式在几何图形中的应用
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为()


A.![]() | B.![]() | C.![]() | D.![]() |
.阅读:若x满足(80﹣x)(x﹣60)=30,求
的值.
解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
请仿照上例解决下面的问题:
(1)若 x 满足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如图,正方形 ABCD 的边长为 x,AE=10,CG=25,长方形 EFGD 的面积是500,四边形 NGDH 和 MEDQ 都是正方形,PQDH 是长方形,那么图中阴影部分的面积等于_____(结果必须是一个具体数值).

解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
请仿照上例解决下面的问题:
(1)若 x 满足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如图,正方形 ABCD 的边长为 x,AE=10,CG=25,长方形 EFGD 的面积是500,四边形 NGDH 和 MEDQ 都是正方形,PQDH 是长方形,那么图中阴影部分的面积等于_____(结果必须是一个具体数值).
