- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- + 算法与程序框图
- 算法的概念
- 程序框图基本符号
- 顺序结构框图
- 条件结构框图
- 变量与赋值
- 基本算法语句
- 算法案例
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国魏晋时期的数学家刘徽,他在注《九章算术》
中采用正多边形面积逐渐逼近圆面积的算法计算圆周率
,用刘徽自己的原话就是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.”设计程序框图是计算圆周率率不足近似值的算法,其中圆的半径为1.若程序中输出的
是圆的内接正1024边形的面积,则判断框中应填

中采用正多边形面积逐渐逼近圆面积的算法计算圆周率



A.![]() | B.![]() | C.![]() | D.![]() |
公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的
值为( )
参考数据:
,
,
.


参考数据:




A.12 | B.24 | C.48 | D.96 |