- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- + 算法初步
- 算法与程序框图
- 基本算法语句
- 算法案例
- 框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,某同学设计了如图所示的程序框图,则框图中的“
”处应填入( )



A.![]() | B.![]() |
C.![]() | D.![]() |
秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入
的值分别为
,
,则输出
的值为( )






A.![]() | B.![]() |
C.![]() | D.![]() |
宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”下图是解决此问题的一个程序框图,其中
为松长、
为竹长,则输出的
( )





A.![]() | B.![]() | C.![]() | D.2 |