- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理及辨析
- + 正弦定理解三角形
- 正弦定理判定三角形解的个数
- 正弦定理求外接圆半径
- 正弦定理边角互化的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等差数列
中,前
项和
满足:
,
.
(Ⅰ)求数列的通项公式以及前
项和公式.
(Ⅱ)是否存在三角形同时具有以下两个性质,如果存在请求出相应的三角形三边
以及
和
值:
(1)三边是数列
中的连续三项,其中
;
(2)最小角是最大角的一半.





(Ⅰ)求数列的通项公式以及前

(Ⅱ)是否存在三角形同时具有以下两个性质,如果存在请求出相应的三角形三边
以及


(1)三边是数列


(2)最小角是最大角的一半.
如图:正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.
