- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 已知两角的正、余弦,求和、差角的正切
- 求15°等特殊角的正切
- + 用和、差角的正切公式化简、求值
- 逆用和、差角的正切公式化简、求值
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,某人在斜坡
处仰视正对面山顶上一座铁塔,塔高
米,塔所在山高
米,
米,观测者所在斜坡
近似看成直线,斜坡与水平面夹角为
,

(1)以射线
为
轴的正向,
为
轴正向,建立直角坐标系,求出斜坡
所在直线方程;
(2)当观察者
视角
最大时,求点
的坐标(人的身高忽略不计).








(1)以射线





(2)当观察者



如图,已知城市
周边有两个小镇
、
,其中乡镇
位于城市
的正东方
处,乡镇
与城市
相距
,
与
夹角的正切值为2,为方便交通,现准备建设一条经过城市
的公路
,使乡镇
和
分别位于
的两侧,过
和
建设两条垂直
的公路
和
,分别与公路
交汇于
、
两点,以
为原点,
所在直线为
轴,建立如图所示的平面直角坐标系
.

(1)当两个交汇点
、
重合,试确定此时
路段长度;
(2)当
,计算此时两个交汇点
、
到城市
的距离之比;
(3)若要求两个交汇点
、
的距离不超过
,求
正切值的取值范围.





























(1)当两个交汇点



(2)当




(3)若要求两个交汇点



