- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- + 导数的计算
- 基本初等函数的导数公式
- 导数的运算法则
- 简单复合函数的导数
- 导数的加减法
- 导数的乘除法
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
R),
为其导函数,且
时
有极小值
.
(1)求
的单调递减区间;
(2)若
,
,当
时,对于任意x,
和
的值至少有一个是正数,求实数m的取值范围;
(3)若不等式
(
为正整数)对任意正实数
恒成立,求
的最大值.






(1)求

(2)若





(3)若不等式



