- 集合与常用逻辑用语
- 函数与导数
- 对数的运算
- + 对数的运算性质的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(1)判断f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函数”,哪些不是,并说明理由;
(2)若函数g(x)=lnx(x∈[M,+∞))是“保三角形函数”,求M的最小值;
(3)若函数h(x)=sinx(x∈(0,A))是“保三角形函数”,求A的最大值.
(1)判断f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函数”,哪些不是,并说明理由;
(2)若函数g(x)=lnx(x∈[M,+∞))是“保三角形函数”,求M的最小值;
(3)若函数h(x)=sinx(x∈(0,A))是“保三角形函数”,求A的最大值.
(Ⅰ)设x,y,z都大于1,w是一个正数,且有logxw=24,logyw=40,logxyzw=12,求logzw.
(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程.
(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程.