1.单选题- (共4题)
3.
有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是


A.4 | B.5 | C.6 | D.7 |
2.填空题- (共10题)
3.解答题- (共5题)
15.
是定义在
上且满足如下条件的函数
组成的集合:
①对任意的
,都有
;
②存在常数
,使得对任意的
,都有
.
(1)设
,问
是否属于
?说明你的判断理由;
(2)若
,如果存在
,使得
,证明这样的
是唯一的;
(3)设
为正实数,是否存在函数
,使
?作出你的判断,并说明理由.



①对任意的


②存在常数



(1)设



(2)若




(3)设



17.
某公司进行共享单车的投放与损耗统计,到去年
年底单车的市场保有量(已投入市场且能正常使用的单车数量)为
辆,预计今后每年新增单车1000辆,随着单车的频繁使用,估计每年将有200辆车的损耗,并且今后若干年内,年平均损耗在上一年损耗基础上增加
%.
(1)预计
年底单车的市场保有量是多少?
(2)到哪一年底,市场的单车保有量达到最多?该年的单车保有量是多少辆(最后结果精确到整数)?



(1)预计

(2)到哪一年底,市场的单车保有量达到最多?该年的单车保有量是多少辆(最后结果精确到整数)?
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19