1.单选题- (共6题)
2.选择题- (共8题)
11.
小林总是抱怨:上中学后,作业多,考试多,成绩还没有小学时候高,学习真是太苦了。要使小林改变这种态度,小林应该认识到( )
①学习是一个探究和发现的过程 ②通过学习可以发现自身的潜能,获得一种超越自己的快乐
③学习本来就是这个样子 ④享受学习的机会本身就是一种快乐
12.
小林总是抱怨:上中学后,作业多,考试多,成绩还没有小学时候高,学习真是太苦了。要使小林改变这种态度,小林应该认识到( )
①学习是一个探究和发现的过程 ②通过学习可以发现自身的潜能,获得一种超越自己的快乐
③学习本来就是这个样子 ④享受学习的机会本身就是一种快乐
3.填空题- (共1题)
4.解答题- (共6题)
16.
已知函数
其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
(考点定位)本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
(考点定位)本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
17.
在
中,内角A,B,C所对的分别是a,b,c.已知a=2,c=
,cosA=
.
(I)求sinC和b的值;
(II)求
的值.
(考点定位)本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角和余弦公式以及正弦定理、余弦定理等基础知识,考查基本运算求解能力.



(I)求sinC和b的值;
(II)求

(考点定位)本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角和余弦公式以及正弦定理、余弦定理等基础知识,考查基本运算求解能力.
18.
已知
是等差数列,其前n项和为
,
是等比数列,且


(I)求数列
与
的通项公式;
(II)记
求证:
,
.
(考点定位)本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.






(I)求数列


(II)记



(考点定位)本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.
19.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,
,BC=1,
,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值.

(考点定位)本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.


(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值.

(考点定位)本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.
20.
已知椭圆
(a>b>0),点
在椭圆上.
(I)求椭圆的离心率.
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
(考点定位)本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.


(I)求椭圆的离心率.
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
(考点定位)本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.
试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(8道)
填空题:(1道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:13