浙江省湖州市吴兴区2019-2020学年八年级上学期期末数学试题

适用年级:初二
试卷号:638973

试卷类型:期末
试卷考试时间:2020/2/13

1.单选题(共3题)

1.
如图,直线与直线相交于点,则不等式的解为(  )
A.B.C.D.
2.
线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为. 其中正确的是(  )
A.②③B.①②③④C.①③④D.②③④
3.
定义:△ABC中,一个内角的度数为,另一个内角的度数为,若满足,则称这个三角形为“准直角三角形”.如图,在Rt△ABC中,∠C=90°, AC=8,BC=6,D是BC上的一个动点,连接AD,若△ABD是“准直角三角形”,则CD的长是(  )
A.B.C.D.

2.填空题(共4题)

4.
课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的满足的数量关系是_____. 现将△ABF向上翻折,如图②,已知,则△ABC的面积是_____.
5.
如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD=21°时,∠B=______.
6.
已知一个正比例函数的图象经过点(-2,4), 则这个正比例函数的表达式是________
7.
李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.
常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.

3.解答题(共5题)

8.
已知:如图,点A,D,B,E在同一条直线上,∠ABC=∠EDF,AD=BE,BC=DF. 求证:AC=EF.
9.
等腰Rt△ABC,点D为斜边AB上的中点,点E在线段BD上,连结CD,CE,作AH⊥CE,垂足为H,交CD于点G,AH的延长线交BC于点F.
(1)求证:△ADG≌△CDE.
(2)若点H恰好为CE的中点,求证:∠CGF=∠CFG.
10.
已知,一次函数的图像与轴、轴分别交于点A、点B,与直线 相交于点
A.过点B作轴的平行线l.点P是直线l上的一个动点.
(1)求点A,点B的坐标.
(2)若,求点P的坐标.
(3)若点E是直线上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.
11.
某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地. 乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地. 已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为(分),图中线段OA表示甲离开学校的路程(米)与(分)的函数关系的图像.图中折线B—C—D和线段EA表示乙离开学校的路程(米)与(分)的函数关系的图像.根据图中所给的信息,解答下列问题:
(1)甲步行的速度和乙骑行的速度;
(2)甲出发多少时间后,甲、乙两人第二次相遇?
(3)若(米)表示甲、乙两人之间的距离,当时,求(米)关于(分)的函数关系式.
12.
等腰三角形ABC的周长为16,腰AB长为,底边BC长为,求:
(1)y关于x的函数表达式;
(2)自变量x的取值范围;
(3)底边BC长为7时,腰长为多少?
试卷分析
  • 【1】题量占比

    单选题:(3道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:12