刷题首页
题库
初中数学
题干
等腰Rt△ABC,点D为斜边AB上的中点,点E在线段BD上,连结CD,CE,作AH⊥CE,垂足为H,交CD于点G,AH的延长线交BC于点F.
(1)求证:△ADG≌△CDE.
(2)若点H恰好为CE的中点,求证:∠CGF=∠CFG.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 04:31:50
答案(点此获取答案解析)
同类题1
如图,△ABC中,AD平分∠BAC,DE⊥AB于点E且AE=8cm,F为AE的中点,G从A点向C点以每秒1个单位的速度运动,则点G经过_______秒时DG=DF.
同类题2
如图,在△
ABC
中,
AB
=
AC
=2,∠
B
=40°,点
D
在线段
BC
上运动(
D
不与
B
、
C
重合),连接
AD
,作∠
ADE
=40°,
DE
交线段
AC
于
E
点.
(1)当∠
BDA
=115°时,∠
BAD
=___°,∠
DEC
=___°;
(2)当
DC
等于多少时,△
ABD
与△
DCE
全等?请说明理由;
(3)在点
D
的运动过程中,△
ADE
的形状可以是等腰三角形吗?若可以,请直接写出∠
BDA
的度数;若不可以,请说明理由.
同类题3
如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.
同类题4
已知,将矩形ABCD折叠,使点C与点A重合,点D落在点G处,折痕为E
A.
(1)如图1,求证:BE=GF;
(2)如图2,连接CF、DG,若CE=2BE,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形都为等腰三角形
同类题5
如图,在平面直角坐标系
xOy
中,直线
:
交
轴于点
、交
轴于点
,
(1)求直线
的函数表达式;
(2)设点
是
轴上的一点
①在坐标平面内是否存在点
,使以
、
、
、
为顶点的四边形是菱形?若存在,求出
点的坐标;若不存在,说明理由.
②若
是线段
的中点,点
与点
关于
轴对称,点
在直线
上,当
为等边三角形时,求直线
的函数表达式.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定