江苏省扬州市仪征市2019-2020学年八年级上学期期中数学试题

适用年级:初二
试卷号:638405

试卷类型:期中
试卷考试时间:2019/12/2

1.单选题(共7题)

1.
如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(    )
A.CB=CDB.∠BCA=∠DCA
C.∠BAC=∠DACD.∠B=∠D=90°
2.
以下轴对称图形中,对称轴条数最少的是( )
A.B.
C.D.
3.
在联欢会上,有ABC三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的(   )
A.三边中垂线的交点B.三边中线的交点
C.三条角平分线的交点D.三边上高的交点
4.
下列各组图形中是全等图形的是()
A.B.C.D.
5.
如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为(    )
A.3B.4C.5D.6
6.
四个边长为5的大正方形按如图方式摆放,在中间形成一个边长为3的小正方形,则正方形ABCD的面积为(    )
A.16B.29C.34D.39
7.
如图,已知,添加下列条件后,仍不能判定的是(   )
A.B.
C.D.

2.选择题(共1题)

8.

1936年6月至1937年6月法国以布鲁姆为首的人民阵线政府推出了—系列政策:调整劳资关系;改组法兰西银行;成立国家小麦局,控制农产品销售,并规定农场抵押偿付办法;扶植企业发展,举公共工程;改革税收制度等。这种做法(   )

3.填空题(共3题)

9.
王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为______cm.
10.
如图是跷跷板示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA)是_____度.
11.
已知等腰直角△ABC,∠ABC=90°,AB=BC=4,平面内有一点D,连接CD、AD,若CD=2,AD=6,则∠BCD=_____.

4.解答题(共7题)

12.
如图,AC=AB,DC=DB,AD与BC相交于O.求证:AD垂直平分BC.
13.
如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=E
A.小华的想法对吗?为什么?
14.
如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:△ABE≌△CDF.
15.
在△ABC中,BC边上的高AG平分∠BAC.
(1)如图1,求证:AB=AC.
(2)如图2,点D、E在△ABC的边BC上,AD=AE,BC=10cm,DE=6cm,求BD的长.
16.
在探索三角形全等的条件时,老师给出了定长线段a,b,且长度为b的边所对的角为n°(0<n<90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中AB=a,BD=BC=b,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:
(1)当n=45时(如图2),小明测得∠ABC=65°,请根据小明的测量结果,求∠ABD的大小;
(2)当n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;
(3)如图4,在(2)问的基础上,过点B作AD′的垂线,垂足为点E,延长AE到点F,使得EF=(AD+AC),连接BF,请判断△ABF的形状,并说明理由.
17.
明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.
18.
如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.
试卷分析
  • 【1】题量占比

    单选题:(7道)

    选择题:(1道)

    填空题:(3道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:17