1.单选题- (共11题)
7.
设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:
①若m∥n,m⊥β,则n⊥β;
②若m∥α,m∥β,则α∥β;
③若m∥n,m∥β,则n∥β;
④若m⊥α,m⊥β,则α⊥β.
其中真命题的个数为( )
①若m∥n,m⊥β,则n⊥β;
②若m∥α,m∥β,则α∥β;
③若m∥n,m∥β,则n∥β;
④若m⊥α,m⊥β,则α⊥β.
其中真命题的个数为( )
A.1 | B.2 | C.3 | D.4 |
8.
如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;
②BD⊥FC;
③平面DBF⊥平面BFC;
④平面DCF⊥平面BFC.
则在翻折过程中,可能成立的结论的个数为( )

②BD⊥FC;
③平面DBF⊥平面BFC;
④平面DCF⊥平面BFC.
则在翻折过程中,可能成立的结论的个数为( )

A.1 | B.2 | C.3 | D.4 |
9.
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
由
附表:
参照附表,得到的正确结论是( )
| 男 | 女 | 总计 |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由

附表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.有99%以上的把握认为“爱好该项运动与性别有关” |
B.有99%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
11.
设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)

(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)

A.6038 | B.6587 | C.7028 | D.7539 |
2.选择题- (共1题)
12.
. The glass doors have taken the place of the wooden ones at the entrance, ________ in the natural light during the day.
. The glass doors have taken the place of the wooden ones at the entrance, ________ in the natural light during the day.
3.填空题- (共3题)
13.
设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(-x-2)+f(x)=0;③当x∈[0,1)时,f(x)=lg(x+1).则f(
)+lg14=________.

4.解答题- (共6题)
16.
(本题满分10分)已知函数f(x)=|x+a|+|x-2|的定义域为实数集R.
(1)当a=5时,解关于x的不等式f(x)>9;
(2)设关于x的不等式f(x)≤|x-4|的解集为A,若B={x∈R||2x-1|≤3},当A∪B=A时,求实数a的取值范围.
(1)当a=5时,解关于x的不等式f(x)>9;
(2)设关于x的不等式f(x)≤|x-4|的解集为A,若B={x∈R||2x-1|≤3},当A∪B=A时,求实数a的取值范围.
17.
已知一家公司生产某种品牌服装的年固定成本为
万元,每生产
千件需另投入
万元.设该公司一年内共生产该品牌服装
千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)






(1)写出年利润


(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
19.
已知函数f(x)=ex, g(x)=lnx.
(1)设f(x)在x1处的切线为l1, g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有两个实根,求实数a的取值范围;
(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.
(1)设f(x)在x1处的切线为l1, g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有两个实根,求实数a的取值范围;
(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.
20.
如图,在四棱锥P—ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=
,PA=AD=2,AB=BC=1.
(1)求点D到平面PBC的距离;
(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B-CQ-D的余弦值.

(1)求点D到平面PBC的距离;
(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求二面角B-CQ-D的余弦值.

试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(1道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20