1.填空题- (共13题)
12.
现有形状、大小都相同的5张卡片,其中有2张卡片写着文字“中”,2张卡片写着文字“国”,1张卡片写着文字“梦”.若从中任意取出3张,则取出的3张卡片上的文字能组成“中国梦”的概率为____
2.解答题- (共8题)
15.
如图,某公园内有一块矩形绿地区域ABCD,已知AB=100米,BC=80米,以AD,BC为直径的两个半圆内种植花草,其它区域种值苗木. 现决定在绿地区域内修建由直路BN,MN和弧形路MD三部分组成的观赏道路,其中直路MN与绿地区域边界AB平行,直路为水泥路面,其工程造价为每米2a元,弧形路为鹅卵石路面,其工程造价为每米3a元,修建的总造价为W元. 设
.

(1)求W关于
的函数关系式;
(2)如何修建道路,可使修建的总造价最少?并求最少总造价.


(1)求W关于

(2)如何修建道路,可使修建的总造价最少?并求最少总造价.
19.
[选修4—4:坐标系与参数方程]
在极坐标系中,曲线C的极方程为
. 以极点为坐标原点,极轴为x轴的正半轴的平面直角坐标系
中,直线l的参数方程为
(t为参数). 已知直线l与曲线C有公共点,求实数a的取值范围.
在极坐标系中,曲线C的极方程为



20.
甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.
(1)若在一局中甲先摸,求甲在该局获胜的概率;
(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.
(1)若在一局中甲先摸,求甲在该局获胜的概率;
(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.
试卷分析
-
【1】题量占比
填空题:(13道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21