1.单选题- (共8题)
2.
一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B表示第二次摸得白球,则A与B是( )
A.互斥事件 | B.不相互独立事件 |
C.对立事件 | D.相互独立事件 |
3.
某校举办一场篮球投篮选拔比赛,比赛的规则如下:每个选手先后在二分区、三分区和中场跳球区三个区域各投一球,只有当前一次球投进后才能投下一次,三次全投进就算胜出,否则即被淘汰.已知某选手在二分区投中球的概率为
,在三分区投中球的概率为
,在中场跳球区投中球的概率为
,且在各位置投球是否投进互不影响,则该选手被淘汰的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
4.
如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()


A.0.960 | B.0.864 | C.0.720 | D.0.576 |
6.
甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为
,乙及格的概率为
,丙及格的概率为
,三人各答一次,则三人中只有一人及格的概率为( )



A.![]() | B.![]() | C.![]() | D.以上都不对 |
7.
投掷一枚质地均匀的硬币和一枚质地均匀的骰子各一次,记事件A为“硬币的正面向上”,事件B为“骰子向上的点数为2”,则A与B( )
A.是互斥事件 | B.是对立事件 | C.相互独立 | D.不相互独立 |
8.
已知甲盒中有20个螺杆,其中A型16个,B型4个;乙盒中有24个螺母,其中A型18个,B型6个.现从甲、乙两盒中各任取一个,记事件A:“甲盒中抽得A型螺杆”,B:“乙盒中抽得B型螺母”,则事件A与
( )

A.互斥 | B.对立 | C.相互独立 | D.不相互独立 |
2.选择题- (共2题)
9.如图所示,在竖直放置的半圆形光滑绝缘细管的圆心
处放一点电荷,将质量为
、电荷量为
的小球从管的水平直径的端点
由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力。若小球所带电荷量很小,不影响
点处的点电荷的电场,则放于圆心处的电荷在AB弧中点处的电场强度大小






10.成为初中生后,我们有了新的身份、新的角色。在日常生活中,我们的言行举止,也应有”全新”的面貌。下列做法正确的是( )
①我们自觉反思自己的言行,并一定程度上控制自己的言行
②当我们遇到问题时,总是希望自己想办法解决,坚决不向老师和家长请教和求助
③我们要遵守新的校规校级
④有了更多的责任,也应该有更多的自觉性
3.填空题- (共5题)
4.解答题- (共15题)
26.
已知某人做某件事,成功的概率只有0.1.用计算器计算,如果他尝试10次,而且每次是否成功都相互独立,则他至少有一次成功的概率为多少(精确到0.01)?如果他尝试20次呢?如果要保证至少成功一次的概率不小于90%,则他至少要尝试多少次?
28.
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为
,
,
,
,且各轮问题能否正确回答互不影响.
(1)求该选手进入第四轮才被淘汰的概率;
(2)求该选手至多进入第三轮考核的概率;
(3)求该选手回答过四个问题的概率.




(1)求该选手进入第四轮才被淘汰的概率;
(2)求该选手至多进入第三轮考核的概率;
(3)求该选手回答过四个问题的概率.
29.
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为
;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时.
(1)求出甲、乙两人所付租车费用相同的概率;
(2)求甲、乙两人所付的租车费用之和为4元时的概率.


(1)求出甲、乙两人所付租车费用相同的概率;
(2)求甲、乙两人所付的租车费用之和为4元时的概率.
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(5道)
解答题:(15道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:28