1.单选题- (共10题)
1.
下列命题中的真命题的个数是()
①a>b成立的一个充分不必要的条件是a>b+1;
②已知命题p∨q为真命题,则p∧q为真命题;
③命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;
④命题“若x<﹣1,则x2﹣2x﹣3>0”的否命题为:“若x<﹣1,则x2﹣3x+2≤0”.
①a>b成立的一个充分不必要的条件是a>b+1;
②已知命题p∨q为真命题,则p∧q为真命题;
③命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”;
④命题“若x<﹣1,则x2﹣2x﹣3>0”的否命题为:“若x<﹣1,则x2﹣3x+2≤0”.
A.1个 | B.2个 | C.3个 | D.4个 |
6.
定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式exf(x)>ex+2(其中e为自然对数的底数)的解集为( )
A.{x|x>0} | B.{x|x<0} |
C.{x|x<﹣1或x>1} | D.{x|x<﹣1或0<x<1} |
7.
设某中学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归直线方程为
,给出下列结论,则错误的是( )

A.y与x具有正的线性相关关系 |
B.回归直线至少经过样本数据(xi,yi)(i=1,2,…,n)中的一个 |
C.若该中学某女生身高增加1cm,则其体重约增加0.85kg |
D.回归直线一定过样本点的中心点![]() |
8.
某高中的4名高三学生计划在高考结束后到西藏、新疆、香港等3个地区去旅游,要求每个地区都要有学生去,每个学生只去一个地区旅游,且学生甲不到香港,则不同的出行安排有( )
A.36种 | B.28种 | C.24种 | D.22种 |
10.
2015年6月20日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=( )
A.
B.
C.
D.
A.




2.选择题- (共3题)
11.五个孩子的年龄刚好是一个比一个大一岁,如果中间一个孩子的年龄为a,则其余4个孩子的年龄用式子表示是{#blank#}1{#/blank#},{#blank#}2{#/blank#},{#blank#}3{#/blank#},{#blank#}4{#/blank#}.
12.五个孩子的年龄刚好是一个比一个大一岁,如果中间一个孩子的年龄为a,则其余4个孩子的年龄用式子表示是{#blank#}1{#/blank#},{#blank#}2{#/blank#},{#blank#}3{#/blank#},{#blank#}4{#/blank#}.
13.五个孩子的年龄刚好是一个比一个大一岁,如果中间一个孩子的年龄为a,则其余4个孩子的年龄用式子表示是{#blank#}1{#/blank#},{#blank#}2{#/blank#},{#blank#}3{#/blank#},{#blank#}4{#/blank#}.
3.填空题- (共3题)
4.解答题- (共4题)
18.
已知函数f(x)=1﹣ax+lnx,
(1)若函数在x=2处的切线斜率为
,求实数a的值;
(2)若存在x∈(0,+∞)使f(x)≥0成立,求实数a的范围;
(3)证明对于任意n∈N,n≥2有:
.
(1)若函数在x=2处的切线斜率为

(2)若存在x∈(0,+∞)使f(x)≥0成立,求实数a的范围;
(3)证明对于任意n∈N,n≥2有:

19.
(本小题满分12分)
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为



(Ⅰ)求乙投球的命中率

(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17