1.单选题- (共4题)
2.
如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
4.
在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与一边垂直的方向拉向岸边,它的顶端恰好到达岸边的水面.则这根芦苇长为( )


A.12尺 | B.13尺 | C.6尺 | D.7尺 |
2.填空题- (共7题)
10.
在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3…在直线l上,点C1、C2、C3…在y轴正半轴上,则点B2019的横坐标是____.

11.
如图,
表示某机床公司一天的销售收入与机床销售量的关系,
表示该公司一天的销售成本与机床销售量的关系.有以下四个结论:①
对应的函数表达式是y=x;②
对应的函数表达式是y=x+1;③当销售量为2件时,销售收入等于销售成本;④利润与销售量之间的函数表达式是w=0.5x-1.其中正确的结论为____(请把所有正确的序号填写在横线上).





3.解答题- (共7题)
14.
问题情境:已知Rt△ABC的周长为30,斜边长c=13,求△ABC的面积.、
解法展示:设Rt△ABC的两直角边长分别为a,b,则a+b+c=①______,
因为c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因为a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面积=
ab=
×⑦______=⑧______(第2步).
合作探究:(1)对解法展示进行填空.
(2)上述解题过程中,由第1步到第2步体现出来的数学思想是______(填序号).
①整体思想;②数形结合思想;③分类讨论思想.
方法迁移:
(3)已知一直角三角形的面积为24,斜边长为10,求这个直角三角形的周长.
解法展示:设Rt△ABC的两直角边长分别为a,b,则a+b+c=①______,
因为c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因为a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面积=


合作探究:(1)对解法展示进行填空.
(2)上述解题过程中,由第1步到第2步体现出来的数学思想是______(填序号).
①整体思想;②数形结合思想;③分类讨论思想.
方法迁移:
(3)已知一直角三角形的面积为24,斜边长为10,求这个直角三角形的周长.
16.
如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.
(1)DE=AB吗?请说明理由;
(2)如果DE的长度是8 m,则AB的长度是多少?

(1)DE=AB吗?请说明理由;
(2)如果DE的长度是8 m,则AB的长度是多少?
17.
如图1,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN,
(1)求证:AM=BN;
(2)写出点M在如图2所示位置时,线段AB、BM、BN三者之间的数量关系,并给出证明;
(3)点M在图3所示位置时,直接写出线段AB、BM、BN三者之间的数量关系.

(1)求证:AM=BN;
(2)写出点M在如图2所示位置时,线段AB、BM、BN三者之间的数量关系,并给出证明;
(3)点M在图3所示位置时,直接写出线段AB、BM、BN三者之间的数量关系.
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(7道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18