刷题首页
题库
高中数学
题干
“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高的(不超过三次)多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即
,式中
,
,
,
依次为几何体的高、上底面积、下底面积、中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体,则利用辛卜生公式可求得该几何体的体积为( )
A.
B.
C.
D.16
上一题
下一题
0.99难度 单选题 更新时间:2020-03-28 10:17:45
答案(点此获取答案解析)
同类题1
如图,圆柱体
内接于球
,
点为圆柱的上底面与球
表面的一个公共点,若
,圆柱
的体积为
,球
的体积为
,则
______.
同类题2
下图是古希腊数学家阿基米德用平衡法求球的体积所用的图形.此图由正方形
、半径为
的圆及等腰直角三角形构成,其中圆内切于正方形,等腰三角形的直角顶点与
的中点
重合,斜边在直线
上.已知
为
的中点,现将该图形绕直线
旋转一周,则阴影部分旋转后形成的几何体积为( )
A.
B.
C.
D.
同类题3
在
平面上,将两个半圆弧
和
、两条直线
和
围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为
,过
作
的水平截面,所得截面面积为
,试利用祖暅原理、一个平放的圆柱和一个长方体,得出
的体积值为__________
同类题4
如图,已知四面体
中,
,且
两两互相垂直,点
是
的中心.
(1)求二面角
的大小(用反三角函数表示);
(2)过
作
,垂足为
,求
绕直线
旋转一周所形成的几何体的体积;
(3)将
绕直线
旋转一周,则在旋转过程中,直线
与直线
所成角记为
,求
的取值范围.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
组合体的表面积和体积
求旋转体的体积