刷题首页
题库
高中数学
题干
如图为陕西博物馆收藏的国宝——唐·金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯型几何体的主体部分可近似看作是双曲线
的右支与直线
,
,
围成的曲边四边形
绕
轴旋转一周得到的几何体,如图
分别为
的渐近线与
,
的交点,曲边五边形
绕
轴旋转一周得到的几何体的体积可由祖恒原理(祖恒原理:幂势既同,则积不容异).意思是:两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等,那么这两个几何体的体积相等),据此求得该金杯的容积是
_____
.(杯壁厚度忽略不计)
上一题
下一题
0.99难度 填空题 更新时间:2019-04-18 05:39:22
答案(点此获取答案解析)
同类题1
“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:
,式中
,
,
,
依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积
( )
A.
B.
C.
D.
同类题2
已知直角三角形△
中,
,
,
,则△
绕直线
旋转一周所得几何体的体积为_____
同类题3
如图,
是圆柱体
的一条母线,已知
过底面圆的圆心
,
是圆
上不与点
重合的任意一点,
,
,
.
(1)求直线
与平面
所成角的大小;
(2)将四面体
绕母线
旋转一周,求
的三边在旋转过程中所围成的几何体的体积.
同类题4
已知椭圆方程为
,将此椭圆绕y轴旋转一周所得的旋转体的体积为
,满足
的平面区城绕y轴旋转一周所得的旋转体的体积为
,则
A.
B.
C.
D.
,
无明确大小关系
同类题5
我国古代科学家祖冲之儿子祖恒在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”(“幂”是截面积.“势”是几何体的高).意思是两个同高的几何体,若在等高处截面的面积恒相等,则它们的体积相等.已知某不规则几何体与如图所示的三视图所表示的几何体满足“幂势既同”,则该不规则几何体的体积为( )
A.
B.
C.
D.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
组合体的表面积和体积
求旋转体的体积