刷题首页
题库
高中数学
题干
如图,在梯形
ABCD
中,
,
,
,
为梯形
外一点,且
平面
.
(1)求证:
平面
;
(2)当二面角
的平面角的余弦值为
时,求这个四棱锥
的体积.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-28 05:11:21
答案(点此获取答案解析)
同类题1
如图,在五面体
中,四边形
为矩形,
.
(1)证明:
平面
;
(2)连接
,
,若二面角
的大小为120,
,求三棱锥
的体积.
同类题2
已知正三角形
的边长为3,
分别是
边上的点,满足
(如图1).将
折起到
的位置,使平面
平面
,连接
(如图2).
(1)求证:
平面
;
(2)求二面角
的余弦值.
同类题3
在正方形
中,边长
,
的中点为
,现将
沿对角线
翻折(如图),则在翻折的过程中.下列说法正确的是______.(填正确命题的序号)
①直线
与直线
所成的角为
(
,
不重合时);
②三棱锥
体积的最大值为
;
③三棱锥
外接球的表面积为
;
④点
运动形成的轨迹为椭圆的一部分.
同类题4
在四棱锥
P
-
ABCD
中,底面
ABCD
为矩形,平面
PAB
⊥平面
ABCD
,
AB
=
AP
=3,
AD
=
PB
=2,
E
为线段
AB
上一点,且
AE
︰
EB
=7︰2,点
F
、
G
分别为线段
PA
、
PD
的中点.
(1)求证:
PE
⊥平面
ABCD
;
(2)若平面
EFG
将四棱锥
P
-
ABCD
分成左右两部分,求这两部分的体积之比.
同类题5
如图,直四棱柱
底面
直角梯形,
∥
,
,
是棱
上一点,
,
,
,
,
.
(1)求异面直线
与
所成的角;
(2)求证:
平面
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直