刷题首页
题库
高中数学
题干
从抛物线
上任意一点
向
轴作垂线段垂足为
,点
是线段
上的一点,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与轨迹
交于
两点,点
为轨迹
上异于
的任意一点,直线
分别与直线
交于
两点.问:
轴正半轴上是否存在定点使得以
为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-22 12:11:10
答案(点此获取答案解析)
同类题1
已知
,点
在
轴上,点
在
轴的正半轴上,点
在直线
上,且
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知横坐标不为0的点
在直线
上,过
作直线
与曲线
相切于
两点,直线
与
轴交于点
,直线
与曲线
交于
两点,且四边形
的面积为
,求直线
的斜率.
同类题2
在平面直角坐标系xOy中,一动圆经过点
且与直线
相切,设该动圆圆心的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P是曲线E上的动点,点B、C在y轴上,△PBC的内切圆的方程为
,求△PBC面积的最小值.
同类题3
动点
在抛物线
上,过点
作
轴的垂线,垂足为
,设
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设点
,过点
的直线交轨迹
于
(不同于点
)两点,设直线
的斜率分别为
,求
的取值范围.
同类题4
如图,抛物线
:
的焦点为
,以
为直角顶点的等腰直角
的三个顶点
,
,
均在抛物线
上.
(1)过
作抛物线
的切线
,切点为
,点
到切线
的距离为2,求抛物线
的方程;
(2)求
面积的最小值.
同类题5
已知半圆
,动圆与此半圆相切且与
轴相切.
(1)求动圆圆心的轨迹;
(2)是否存在斜率为
的直线
,它与(1)中所得轨迹的曲线由左到右顺次交于
A
、
B
、
C
、
D
四点,且满足
,若存在,求出
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程
抛物线中存在定点满足某条件问题