刷题首页
题库
高中数学
题干
若点
P
0
(
x
0
,
y
0
)在椭圆
(
a
>
b
>0)外,过点
P
0
作该椭圆的两条切线,切点分别为
P
1
,
P
2
,则切点弦
P
1
P
2
所在直线的方程为
.那么对于双曲线
(
a
>0,
b
>0),类似地,可以得到一个正确的切点弦方程为________.
上一题
下一题
0.99难度 填空题 更新时间:2020-01-28 10:11:09
答案(点此获取答案解析)
同类题1
设
为椭圆的左焦点,
为椭圆的右顶点,
为椭圆短轴上的一个顶点,当
时,该椭圆的离心率为
,将此结论类比到双曲线,得到的正确结论为()
A.设
为双曲线的左焦点,
为双曲线的右顶点,
为双曲线虚轴上的一个顶点,当
时,该双曲线的离心率为2
B.设
为双曲线的左焦点,
为双曲线的右顶点,
为双曲线虚轴上的一个顶点,当
时,该双曲线的离心率为4
C.设
为双曲线的左焦点,
为双曲线的右顶点,
为双曲线虚轴上的一个顶点,当
时,该双曲线的离心率为2
D.设
为双曲线的左焦点,
为双曲线的右顶点,
为双曲线虚轴上的一个顶点,当
时,该双曲线的离心率为4
同类题2
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
.
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且短半轴长为
的椭圆
的方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围.
同类题3
圆
在点
处的切线方程为
,类似地,可以求得椭圆
在点
处的切线方程为________.
同类题4
有对称中心的曲线叫做有心曲线,过有心曲线中心的弦叫做有心曲线的直径.定理:如果圆
上异于一条直径两个端点的任意一点与这条直径两个端点连线的斜率存在,则这两条直线的斜率乘积为定值-1.写出该定理在有心曲线
中的推广 .
同类题5
我们在学习立体几何推导球的体积公式时,用到了祖暅原理:即两个等髙的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线
与
轴,直线
及渐近线
所围成的阴影部分(如图)绕
轴旋转一周所得的几何体的体积为__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理