刷题首页
题库
高中数学
题干
在边长分别为
a, b, c
的三角形
ABC
中,其内切圆半径为
r
,则该三角形面积
S
=
(
a
+
b
+
c
)
r
,将这一结论类比到空间,有:
上一题
下一题
0.99难度 填空题 更新时间:2012-03-23 04:12:40
答案(点此获取答案解析)
同类题1
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式
中“…”即代表无限次重复,但原式却是个定值,它可以通过方程
求得
,类似上述过程,则
( )
A.1
B.2
C.3
D.4
同类题2
《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组
的点
组成的图形(图(1)中的阴影部分)绕
轴旋转
,所得几何体的体积为
;满足不等式组
的点
组成的图形(图(2)中的阴影部分)绕
轴旋转
,所得几何体的体积为
.利用祖暅原理,可得
( )
A.
B.
C.
D.
同类题3
二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间中球的二维测度(表面积)
,三维测度(体积)
,观察发现
.已知四维空间中“超球”的三维测度
,猜想其四维测度
________.
同类题4
通过类比长方形,由命题“周长为定值
l
的长方形中,正方形的面积最大,最大值为
”,可猜想关于长方体的相应命题为____
同类题5
三角形的面积为
,其中
为三角形的边长,
为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )
A.
B.
C.
,(
为四面体的高)
D.
,(
分别为四面体的四个面的面积,
为四面体内切球的半径)
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比