刷题首页
题库
高中数学
题干
证明“在△ABC中至多有一个直角或钝角”,第一步应假设 ( )
A.三角形中至少有一个直角或钝角
B.三角形中至少有两个直角或钝角
C.三角形中没有直角或钝角
D.三角形中三个角都是直角或钝角
上一题
下一题
0.99难度 单选题 更新时间:2018-03-02 07:24:05
答案(点此获取答案解析)
同类题1
用反证法证明命题:“三角形三个内角至少有一个不大于
”时,应假设()
A.三个内角都不大于
B.三个内角都大于
C.三个内角至多有一个大于
D.三个内角至多有两个大于
同类题2
(文科学生做)已知数列
满足
.
(1)求
,
,
的值,猜想并证明
的单调性;
(2)请用反证法证明数列
中任意三项都不能构成等差数列.
同类题3
用反证法证明命题:“若
a
+
b
+
c
为偶数,则自然数
a
,
b
,
c
恰有一个偶数”时正确的反设为( )
A.自然数
a
,
b
,
c
都是奇数
B.自然数
a
,
b
,
c
都是偶数
C.自然数
a
,
b
,
c
中至少有两个偶数
D.自然数
a
,
b
,
c
中都是奇数或至少有两个偶数
同类题4
下列说法中正确的个数是( )
①命题:“
、
,若
,则
”,用反证法证明时应假设
或
;
②若
,则
、
中至少有一个大于
;
③若
、
、
、
、
成等比数列,则
;
④命题:“
,使得
”的否定形式是:“
,总有
”.
A.
B.
C.
D.
同类题5
给出下列命题:
用反证法证明命题“设
a
,
b
,
c
为实数,且
,
,则
,
,
”时,要给出的假设是:
a
,
b
,
c
都不是正数;
若函数
在
处取得极大值,则
或
;
用数学归纳法证明
,在验证
成立时,不等式的左边是
;
数列
的前
n
项和
,则
是数列
为等比数列的充要条件;
上述命题中,所有正确命题的序号为______.
相关知识点
推理与证明
直接证明与间接证明
反证法
反证法的概念辨析