刷题首页
题库
高中数学
题干
在平面几何中,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,若四面体
A
BCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
R
,则四面体的体积为( )
A.
(
S
1
+
S
2
+
S
3
)
R
B.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
C.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
D.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
上一题
下一题
0.99难度 单选题 更新时间:2018-04-26 09:42:42
答案(点此获取答案解析)
同类题1
在平面内,
中,
,有结论
,空间中,在四面体
中,
,
,
两两互相垂直,且侧面的3个三角形面积分别记为
,
,
,底面
的面积记为
,类比平面可得到空间四面体的一个结论是__________.
同类题2
三角形的面积为
,(
为三角形的边长,
为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )
A.
(
为底面边长)
B.
(
分别为四面体四个面的面积,
为四面体内切球的半径)
C.
(
为底面面积,
为四面体的高)
D.
(
为底面边长,
为四面体的高)
同类题3
已知正三角形
,它一边上的高为
,内切圆的半径为
,则
,类比这一结论可知:正四面体
的底面上的高为
,内切球的半径为
,则
______.
同类题4
平面上,点A、C为射线PM上的两点,点B、D为射线PN上两点,则有
(其中S
△PAB
、S
△PCD
分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有
=
___________
.(其中V
P-ABE
、V
P-CDF
分别为四面体P-ABE、P-CDF的体积).
同类题5
通过圆与球的类比,由结论“半径为
r
的圆的内接四边形中,正方形的面积最大,最大值为2
r
2
”猜想关于球的相应结论为“半径为
R
的球的内接六面体中,______”.( )
A.长方体的体积最大,最大值为2
R
3
B.正方体的体积最大,最大值为3
R
3
C.长方体的体积最大,最大值为
D.正方体的体积最大,最大值为
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比