刷题首页
题库
高中数学
题干
在平面内,点
三点共线的充要条件是:对于平面内任一点
,有且只有一对实数
,满足向量关系式
,且
.类比以上结论,可得到在空间中,
四点共面的充要条件是:对于平面内任一点
,有且只有一对实数
满足向量关系式
__________
.
上一题
下一题
0.99难度 填空题 更新时间:2018-03-07 12:56:10
答案(点此获取答案解析)
同类题1
给出下面四个推理:
①由“若
是实数,则
”推广到复数中,则有“若
是复数,则
”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点
、
的中点坐标为
”类比推出“极坐标系中两点
、
的中点坐标为
”.
其中,推理得到的结论是正确的个数有( )个
A.1
B.2
C.3
D.4
同类题2
我们用圆的性质类比球的性质如下:
①
p
:圆心与弦(非直径)中点的连线垂直于弦;
q
:球心与小圆截面圆心的连线垂直于截面.
②
p
:与圆心距离相等的两条弦长相等;
q
:与球心距离相等的两个截面圆的面积相等.
③
p
:圆的周长为
C
=π
d
(
d
是圆的直径);
q
:球的表面积为
S
=π
d
2
(
d
是球的直径).
④
p
:圆的面积为
S
=
R
·π
d
(
R
,
d
是圆的半径与直径);
q
:球的体积为
V
=
R
·π
d
2
(
R
,
d
是球的半径与直径).
则上面的四组命题中,其中类比得到的
q
是真命题的有( )个
A.1
B.2
C.3
D.4
同类题3
设△
ABC
的三边长分别为
a
,
b
,
c
,△
ABC
的面积为
S
,则△
ABC
的内切圆半径为
.将此结论类比到空间四面体:设四面体
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,体积为
V
,则四面体的内切球半径为
r
=( )
A.
B.
C.
D.
同类题4
在平面上,设
是三角形ABC三条边上的高.P为三角形内任一点,P到相应三边的距离分别为
,我们可以得到结论:
类比到空间中的四面体
内任一点p, 其中
为四面体四个面上的高,
为p点到四个面的距离,我们可以得到类似结论为
同类题5
对于集合
,我们把集合
,记作
,例如:
,
,则有
,
,若
中有2个元素,
中有3个元素,则
的非空子集有__________个.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比