刷题首页
题库
高中数学
题干
我们用圆的性质类比球的性质如下:
①
p
:圆心与弦(非直径)中点的连线垂直于弦;
q
:球心与小圆截面圆心的连线垂直于截面.
②
p
:与圆心距离相等的两条弦长相等;
q
:与球心距离相等的两个截面圆的面积相等.
③
p
:圆的周长为
C
=π
d
(
d
是圆的直径);
q
:球的表面积为
S
=π
d
2
(
d
是球的直径).
④
p
:圆的面积为
S
=
R
·π
d
(
R
,
d
是圆的半径与直径);
q
:球的体积为
V
=
R
·π
d
2
(
R
,
d
是球的半径与直径).
则上面的四组命题中,其中类比得到的
q
是真命题的有( )个
A.1
B.2
C.3
D.4
上一题
下一题
0.99难度 单选题 更新时间:2017-05-21 12:12:48
答案(点此获取答案解析)
同类题1
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论回答:在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是__________.
同类题2
设
是边长为
的正
内的一点,
点到三边的距离分别为
,则
;类比到空间,设
是棱长为
的空间正四面体
内的一点,则
点到四个面的距离之和
=___________.
同类题3
已知正三角形的外接圆的圆心位于该正三角形的高的三等分点,且外接圆半径的长等于高的三分之二,由此类比,棱长为
的正四面体的外接球的半径的长为__________.
同类题4
已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.若把该结论推广到空间,则有:在棱长都等于
的正四面体
中,若
是正四面体内任意一点,那么
到正四面体各面的距离之和等于( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比