刷题首页
题库
高中数学
题干
(1)椭圆C:
+
=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:
•
为定值b
2
﹣a
2
.
(2)由(1)类比可得如下真命题:双曲线C:
=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则
为定值.请写出这个定值(不要求给出解题过程).
上一题
下一题
0.99难度 解答题 更新时间:2018-10-05 04:49:51
答案(点此获取答案解析)
同类题1
圆
在点
处的切线方程为
,类似地,可以求得椭圆
在点
处的切线方程为________.
同类题2
如图所示,椭圆中心在坐标原点,
F
为左焦点,当
时,其离心率为
,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率
e
等于( )
A.
B.
C.
D.
同类题3
我们在学习立体几何推导球的体积公式时,用到了祖暅原理:即两个等髙的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线
与
轴,直线
及渐近线
所围成的阴影部分(如图)绕
轴旋转一周所得的几何体的体积为__________.
同类题4
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知双曲线
的渐近线方程为
,一个焦点为
.直线
与
在第一象限内与双曲线及渐近线围成如图所示的图形
,则它绕
轴旋转一圈所得几何体的体积为_____.
同类题5
下面几种推理是合情推理的是 ( )
①由圆的性质类比出球的有关性质
②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°
③某次考试张军成绩是100分,由此推出全班同学成绩都是100分
④数列1,0,1,0,…,推测出每项公式
A.①②
B.①③④
C.①②④
D.②④
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理