刷题首页
题库
高中数学
题干
已知
(
),
是关于
的
次多项式;
(1)若
恒成立,求
和
的值;并写出一个满足条件的
的表达式,无需证明.
(2)求证:对于任意给定的正整数
,都存在与
无关的常数
,
,
,…,
,使得
.
上一题
下一题
0.99难度 解答题 更新时间:2015-04-22 07:16:12
答案(点此获取答案解析)
同类题1
已知
,
.
(1)当
时,分别比较
与
的大小(直接给出结论);
(2)由(1)猜想
与
的大小关系,并证明你的结论.
同类题2
数列
满足
).
(1)计算
,并由此猜想通项公式
;
(2)用数学归纳法证明(1)中的猜想.
同类题3
数列
满足
,且
,
是
的前
和.
(1)求
;
(2)猜想
.
同类题4
已知数列
的前
项和
.
(1)计算
;
(2)猜想
的表达式,并用数学归纳法证明你的结论.
同类题5
已知数列
是正数组成的数列,其前
项和为
,对于一切
均有
与2的等差中项等于
与2的等比中项.
(I)计算
并由此猜想
的通项公式
;
(Ⅱ)用数学归纳法证明(I)中你的猜想.
相关知识点
推理与证明
数学归纳法