刷题首页
题库
高中数学
题干
在平面几何中,研究三角形内任意一点与三边的关系时,有真命题:边长为
的正三角形内任意一点到各边的距离之和是定值
。类比上述命题,请写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出证明。
上一题
下一题
0.99难度 解答题 更新时间:2019-07-01 04:40:03
答案(点此获取答案解析)
同类题1
在平面几何中:已知
是△
内的任意一点,连结
并延长交对边于
,则
.这是一个真命题,其证明常采用“面积法”.拓展到空间,可以得出的真命题是:已知
是四面体
内的任意一点,连结
并延长交对面于
,则___________.
同类题2
如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.
同类题3
平面几何中,有边长为
的正三角形内任意点到三边距离之和为定值
.类比上述命题,棱长为
的正四面体内任一点到四个面的距离之和为( )
A.
B.
C.
D.
同类题4
在平面几何中,三角形的面积等于其周长的一半与其内切圆半径之积,类比之,在立体几何中,三棱锥的体积等于______.(用文字表述)
同类题5
下列类比推理中,得到的结论正确的是( )
A.把长方体与长方形类比,则有长方体的对角线平方等于长、宽、高的平方和
B.把
与
类比,则有
C.向量
的数量积运算与实数
的运算性质
类比,则有
D.把
与
类比,则有
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比