刷题首页
题库
高中数学
题干
(1)设
求证
(写出证明过程)
(2)请用你所学过的数学知识证明“糖水加糖会变甜”(假定糖水始终为不饱和溶液)
上一题
下一题
0.99难度 解答题 更新时间:2020-01-03 04:13:15
答案(点此获取答案解析)
同类题1
(本小题满分
分)已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若
为圆
外一点,过
作圆
的两条切线,切点分别为
,则直线
的方程为
.
③若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
,且
平分线段
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程(不要求证明);
(2)过椭圆
外一点
作两直线,与椭圆相切于
两点,求过
两点的直线方程;
(3)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值,且
平分线段
.
同类题2
设
(2<a<3),
,则M、N的大小关系是( )
A.M>N
B.M=N
C.M<N
D.不确定
同类题3
已知
是定义在
上的函数,如果存在常数
,对区间
的任意划分:
,和式
恒成立,则称
为
上的“绝对差有界函数”。注:
。
(1)证明函数
在
上是“绝对差有界函数”。
(2)证明函数
不是
上的“绝对差有界函数”。
(3)记集合
存在常数
,对任意的
,有
成立
,证明集合
中的任意函数
为“绝对差有界函数”,并判断
是否在集合
中,如果在,请证明并求
的最小值;如果不在,请说明理由。
同类题4
(1)(用综合法证明)
已知△ABC的内角A、B、C所对的边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,证明:△ABC为等边三角形。
(2)(用分析法证明)
设a,b,c为一个三角形的三边,s=
(a+b+c),且s
2
=2ab,试证:s<2a.
同类题5
已知
a
>0,
b
>0,
a
+
b
=1,求证:
(1)
;
(2)
.
相关知识点
推理与证明
直接证明与间接证明
综合法
综合法证明