刷题首页
题库
高中数学
题干
现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是
a
的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为
,类比到空间,有两个棱长均为
a
的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-09-02 05:37:53
答案(点此获取答案解析)
同类题1
若三角形内切圆半径为r,三边长为a,b,c,则
,利用类比思想:若四面体内切球半径为R,四个面的面积为
,则四面体的体积
________.
同类题2
祖暅原理“幂势既同,则积不容异”中的“幂”指面积,“势”即是高,意思是:若两个等高的几何体在所有等高处的水平截面的面积恒等,则这两几何体的体积相等.设夹在两个平行平面之间的几何体的体积分别为
,它们被平行于这两个平面的任意平面截得的两个截面面积分别为
,则“
恒成立”是“
”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
同类题3
我们用圆的性质类比球的性质如下:
①
p
:圆心与弦(非直径)中点的连线垂直于弦;
q
:球心与小圆截面圆心的连线垂直于截面.
②
p
:与圆心距离相等的两条弦长相等;
q
:与球心距离相等的两个截面圆的面积相等.
③
p
:圆的周长为
C
=π
d
(
d
是圆的直径);
q
:球的表面积为
S
=π
d
2
(
d
是球的直径).
④
p
:圆的面积为
S
=
R
·π
d
(
R
,
d
是圆的半径与直径);
q
:球的体积为
V
=
R
·π
d
2
(
R
,
d
是球的半径与直径).
则上面的四组命题中,其中类比得到的
q
是真命题的有( )个
A.1
B.2
C.3
D.4
同类题4
如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.
同类题5
对于集合
,我们把集合
,记作
,例如:
,
,则有
,
,若
中有2个元素,
中有3个元素,则
的非空子集有__________个.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比