题库 高中数学

题干

对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为,作残差分析,如表:
身高
60
70
80
90
100
110
体重
6
8
10
14
15
18

0.41
0.01
 
1.21
-0.19
0.41

-0.36
0.07
0.12
1.69
-0.34
-1.12
 
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.
上一题 下一题 0.99难度 解答题 更新时间:2017-05-03 04:40:40

答案(点此获取答案解析)

同类题5

我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布
(1)购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?
(2)2019年该基地考虑增加人工投入,现有以往的人工投入增量x(人)与年收益增量y(万元)的数据如下:
人工投入增量x(人)
2
3
4
6
8
10
13
年收益增量y(万元)
13
22
31
42
50
56
58
 
该基地为了预测人工投入增量为16人时的年收益增量,建立了yx的两个回归模型:
模型①:由最小二乘公式可求得yx的线性回归方程:
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量x做变换,令,则,且有

(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
回归模型
模型①
模型②
回归方程


 
182.4
79.2
 
附:若随机变量,则
样本的最小二乘估计公式为:
另,刻画回归效果的相关指数