刷题首页
题库
高中数学
题干
已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线
A.
(1)求曲线C 的轨迹方程;
(2)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-05 05:55:34
答案(点此获取答案解析)
同类题1
设抛物线
的焦点为
F
,准线为
l
,
A
为
C
上一点,已知以
F
为圆心,
FA
为半径的圆
F
交
l
于
M.N
点.
(1)若
,
的面积为
,求抛物线方程;
(2)若
A.M.F
三点在同一直线
m
上,直线
n
与
m
平行,且
n
与
C
只有一个公共点,求坐标原点到直线
n
、
m
距离的比值.
同类题2
已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.
同类题3
已知抛物线
:
的焦点为
,抛物线
与直线
交于两点
(
为坐标原点),且
.
(1)求抛物线
的方程.
(2)不过原点的直线
与
垂直,且与抛物线交于不同的两点
、
,若坐标原点
在以线段
为直径的圆上,求
的面积.
同类题4
已知动点
M
到定点
F
1
(-2,0)和
F
2
(2,0)的距离之和为
.
(1)求动点
M
的轨迹
C
的方程;
(2)设
N
(0,2),过点
P
(-1,-2)作直线
l
,交曲线
C
于不同于
N
的两点
A
,
B
,直线
NA
,
NB
的斜率分别为
k
1
,
k
2
,求
k
1
+
k
2
的值.
同类题5
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足
.
(1) 求曲线C的方程;
(2)动点Q(x
0
,y
0
)(-2<x
0
<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程
抛物线中的三角形面积问题