刷题首页
题库
高中数学
题干
已知抛物线
的焦点为
,准线为
,点
在
轴负半轴且
,
是抛物线上的一点,
垂直
于点
且
,
分别交
,
于点
,则
______.
上一题
下一题
0.99难度 填空题 更新时间:2018-04-25 03:54:38
答案(点此获取答案解析)
同类题1
已知抛物线
的方程为
,过点
和点
的直线与抛物线
没有公共点,则实数
的取值范围是()
A.
B.
C.
D.
同类题2
在平面直角坐标系
中,抛物线
的顶点在原点,且该抛物线经过点
,其焦点
在
轴上.
(Ⅰ)求过点
且与直线
垂直的直线的方程;
(Ⅱ)设过点
的直线交抛物线
于
,
两点,
,求
的最小值.
同类题3
如图,在平面直角坐标系
中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点,一条垂直于
轴的直线分别与线段
和直线
交于点
.
(1) 若
,求
的值;
(2) 若
,
为线段
的中点,求证: 直线
与该抛物线有且仅有一个公共点.
(3) 若
,直线
的斜率存在,且与该抛物线有且仅有一个公共点,试问
是否一定为线段
的中点? 说明理由.
同类题4
设
是抛物线
上的一点,抛物线
在点
处的切线方程为
.
(1)求
的方程;
(2)已知过点
的两条不重合直线
,
的斜率之积为
,且直线
,
分别交抛物线
于
,
两点和
,
两点.是否存在常数
使得
成立?若存在,求出
的值;若不存在,请说明理由.
同类题5
在直角坐标系
中,已知抛物线
:
,抛物线
的准线与
交于点
.
(1)过
作曲线
的切线,设切点为
,
,证明:以
为直径的圆经过点
;
(2)过点
作互相垂直的两条直线
、
,
与曲线
交于
、
两点,
与曲线
交于
、
两点,线段
,
的中点分别为
、
,试讨论直线
是否过定点?若过,求出定点的坐标;若不过,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与抛物线的位置关系