刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点为
,抛物线
以
为焦点且与椭圆相交于点
、
,直线
与抛物线
相切
(I)求抛物线
的方程和点
的坐标;
(II)求椭圆的方程和离心率.
上一题
下一题
0.99难度 解答题 更新时间:2011-03-31 02:55:46
答案(点此获取答案解析)
同类题1
已知椭园
,
为长轴的一个端点,弦
过椭圆的中心
,且
,
,则其短轴长为 ( )
A.
B.
C.
D.
同类题2
已知椭圆
的左右焦点分别为
,离心率为
;圆
过椭圆
的三个顶点.过点
且斜率不为0的直线
与椭圆
交于
两点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:在
轴上存在定点
,使得
为定值;并求出该定点的坐标.
同类题3
若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点
,则椭圆方程是()
A.
B.
C.
D.
同类题4
已知椭圆
的离心率为
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.
证明:直线
的斜率成等差数列.
同类题5
椭圆
:
的左右焦点分别为
,
,左右顶点分别为
,
,
为椭圆
上的动点(不与
,
重合),且直线
与
的斜率的乘积为
.
(1)求椭圆
的方程;
(2)过
作两条互相垂直的直线
与
(均不与
轴重合)分别与椭圆
交于
,
,
,
四点,线段
、
的中点分别为
、
,求证:直线
过定点,并求出该定点坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
求椭圆的离心率或离心率的取值范围