刷题首页
题库
高中数学
题干
如图,在平面直角坐标系
中,焦点在
轴上的鞘园C:
经过点
,且
经过点
作斜率为
的直线
交椭圆
C
与
A
、
B
两点(
A
在
轴下方).
(1)求椭圆
C
的方程;
(2)过点
且平行于
的直线交椭圆于点
M
、
N
,求
的值;
(3)记直线
与
轴的交点为
P
,若
,求直线
的斜率
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-02 08:53:05
答案(点此获取答案解析)
同类题1
已知椭圆
:
与双曲线
:
有相同左右焦点
,
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)若直线
过
且与椭圆
交于
,
两点,若
,求直线
的斜率取值范围.
同类题2
已知椭圆
过点
,焦距长
.
(I)求椭圆
的标准方程;
(II)设不垂直于坐标轴的直线
与椭圆
交于不同的两点
、
,点
.设
为坐标原点,且
.证明:动直线
经过定点.
同类题3
如图,在平面直角坐标系
xOy
中,椭圆
C
过点
,焦点
F
1
(-
,0),
F
2
(
,0),圆
O
的直径为
F
1
F
2
.
(1)求椭圆
C
及圆
O
的方程;
(2)设直线
l
与圆
O
相切于第一象限内的点
P
.
①若直线
l
与椭圆
C
有且只有一个公共点,求点
P
的坐标;
②直线
l
与椭圆
C
交于
A
,
B
两点.若△
OAB
的面积为
,求直线
l
的方程.
同类题4
已知椭圆
的焦距为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
.取点
,连接
,过点
作
的垂线交
轴于点
.点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.
同类题5
如图,点
F
为椭圆
C
:
(
a
>
b
>0)的左焦点,点
A
,
B
分别为椭圆
C
的右顶点和上顶点,点
P
(
,
)在椭圆
C
上,且满足
OP
∥
AB
.
(1)求椭圆
C
的方程;
(2)若过点
F
的直线
l
交椭圆
C
于
D
,
E
两点(点
D
位于
x
轴上方),直线
AD
和
AE
的斜率分别为
和
,且满足
﹣
=﹣2,求直线
l
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围