刷题首页
题库
高中数学
题干
如图,已知椭圆
:
的离心率为
,
是椭圆
上一点。
(1)求椭圆
的方程;
(2)若过点
作圆
:
的切线分别交椭圆于
两点,试问直线
的斜率是否为定值?若是,求出这定值;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-10 07:27:54
答案(点此获取答案解析)
同类题1
已知椭圆
:
(
)的上顶点到右顶点的距离为
,左焦点为
,过点
且斜率为
的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆
的标准方程及
的取值范围;
(Ⅱ)在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标;若不存在,请说明理由.
同类题2
在平面内点
、
、
满足
.
(1)求点
的轨迹方程;
(2)点
,
在椭圆
上,且
与
轴平行,过
点作两条直线分别交椭圆
于
,
两点.若直线
平分
,求证:直线
的斜率是定值,并求出这个定值.
同类题3
已知椭圆
:
的长轴端点分别为
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与轨迹
交于不同的两点
,且
,求直线
的斜率的取值范围.
同类题4
已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆方程;
(Ⅱ)设不过原点
的直线
,与该椭圆交于
两点,直线
的斜率分别为
,满足
.
(i)当
变化时,
是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由;
(ii)求
面积的取值范围.
同类题5
已知椭圆
的方程为:
,其焦点在
轴上,离心率
.
(1)求该椭圆的标准方程;
(2)设动点
满足
,其中M,N是椭圆
上的点,直线OM与ON的斜率之积为
,求证:
为定值.
(3)在(2)的条件下,问:是否存在两个定点
,使得
为定值?
若存在,给出证明;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题