刷题首页
题库
高中数学
题干
椭圆
(
)的左、右焦点分别为
,
在椭圆上,
的周长为
,面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,连接
,
并延长交椭圆
于
,连接
,探索
与
的斜率之比是否为定值并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-07 03:47:55
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的离心率为
,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l
1
,l
2
,这两条直线与椭圆C的另一个交点分别为M,N.设l
1
的斜率为k(k≠0),△DMN的面积为S,当
,求k的取值范围.
同类题2
已知点
为椭圆
的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆
有且仅有一个交点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与
轴交于
,过点
的直线与椭圆
交于两不同点
,
,若
,求实数
的取值范围.
同类题3
已知焦点在
轴上的椭圆
,焦距为
,长轴长为
.
(1)求椭圆的标准方程;
(2)过点
作两条互相垂直的射线,与椭圆交于
两点.
①证明:点
到直线
的距离为定值,并求出这个定值;
②求
.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线
相切.
、
是椭圆的左、右顶点,直线
过
点且与
轴垂直.
(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
、
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于点
,
为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.
同类题5
已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于
,
两点,若直线
、
的斜率分别为
、
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题