刷题首页
题库
高中数学
题干
已知椭圆
的左焦点为
,且椭圆上的点到点
的距离最小值为
.
(1)求椭圆的方程;
(2)已知经过点
的直线
与椭圆交于不同的两点
、
,且
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-20 08:52:19
答案(点此获取答案解析)
同类题1
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题2
已知直线
所经过的定点
恰好是椭圆
的一个焦点,且椭圆
上的点到点
的最大距离为
.
(1)求椭圆
的标准方程;
(2)已知圆
,直线
.试证明当点
在椭圆
上运动时,直线
与圆
恒相交;并求直线
被圆
所截得的弦长的取值范围.
同类题3
已知椭圆
的离心率为
,点
在椭圆
上
(
)求
的方程.
(
)设直线
不经过
点且与
相交于
、
两点,若直线
与直线
的斜率的和为
,
证明:
过定点.
同类题4
已知椭圆C:
的左、右焦点为
,
,且半焦距为1,直线l经过点
,当l垂直于x轴时,与椭圆C交于
,
两点,且
.
求椭圆C的方程;
当直线l不与x轴垂直时,与椭圆C相交于
,
两点,取
的取值范围.
同类题5
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程