刷题首页
题库
高中数学
题干
(2018广东六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)高三下学期第三次联考)已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-25 06:38:05
答案(点此获取答案解析)
同类题1
设P(x,y)是椭圆
上的点,且点P的纵坐标y≠0,点A(-5,0),B(5,0),试判断k
PA
·k
PB
是否为定值.若是定值,求出该定值;若不是定值,请说明理由.
同类题2
已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
同类题3
已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,且椭圆
上的点到两个焦点的距离之和为
.
(1)求椭圆
的方程;
(2)设
为椭圆
的左顶点,过点
的直线
与椭圆交于点
,与
轴交于点
,过原点且与
平行的直线与椭圆交于点
.求
的值.
同类题4
已知椭圆
,倾斜角为
的直线与椭圆相交于
两点,且线段
的中点为
.过椭圆
内一点
的两条直线分别与椭圆交于点
,且满足
,其中
为实数.当直线
平行于
轴时,对应的
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.
同类题5
已知焦点在
轴上的椭圆
,短轴的一个端点与两个焦点构成等腰直角三角形,且椭圆过点
.
(1)求椭圆
的标准方程;
(2) 设
依次为椭圆的上下顶点,动点
满足
,且直线
与椭圆另一个不同于
的交点为
.求证:
为定值,并求出这个定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题