刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
过点
与椭圆
交于
、
两点,则在
轴上是否存在定点
,使得
为定值?如果存在,求出定点与定值;如果不存在,试说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-30 09:43:57
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
同类题2
如图,
P
为椭圆
上的一动点,过点
P
作椭圆
的两条切线
PA
,
PB
,斜率分别为
,
.若
为定值,则
( )
A.
B.
C.
D.
同类题3
在平面直角坐标系
中,点
是圆
:
上的动点,定点
,线段
的垂直平分线交
于
,记
点的轨迹为
.
(Ⅰ)求轨迹
的方程;
(Ⅱ)若动直线
:
与轨迹
交于不同的两点
、
,点
在轨迹
上,且四边形
为平行四边形.证明:四边形
的面积为定值.
同类题4
如图,在平面直角坐标系中,已知A、B、C是椭圆
上不同的三点,
,C在第三象限,线段BC的中点在直线OA上。
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点P在椭圆上(异于点A、B、C)且直线PB, PC分别交直线OA于M、N两点,证明
为定值并求出该定值.
同类题5
已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
、
两点,以
为对角线作正方形
,记直线
与
轴的交点为
,问
、
两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题