刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2012-09-03 08:59:36
答案(点此获取答案解析)
同类题1
已知椭圆
的短轴顶点分别为
,且短轴长为
为椭圆上异于
的任意-一点,直线
的斜率之积为
(1)求椭圆
的方程;
(2)设
为坐标原点,圆
的切线
与椭圆
C
相交于
两点,求
面积的最大值.
同类题2
:
的圆心为
,
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)直线
过
与(1)中所求轨迹
交于
、
不同两点,
点关于
轴对称点为点
,直线
是否恒过定点,若过定点求出该点坐标,否则,说明理由.
同类题3
如图所示,已知圆A:(x+3)
2
+y
2
=100,圆A内一定点B(3,0),圆P过B且与圆A内切,则圆心P的轨迹方程为_________.
同类题4
已知两点
、
,动点
在
轴上的射影是
,且
.
(1)求动点
的轨迹方程;
(2)设直线
、
的两个斜率存在,分别记为
、
,若
,求点
的坐标;
(3)若经过点
的直线
与动点
的轨迹有两个交点
、
,当
时,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中存在定点满足某条件问题