刷题首页
题库
高中数学
题干
已知中心在原点
,焦点在
轴上的椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆
交于不同的两点
,且
,求直线
的斜率
的取值范围;
上一题
下一题
0.99难度 解答题 更新时间:2019-12-09 11:38:53
答案(点此获取答案解析)
同类题1
如图
为椭圆C:
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
同类题2
已知椭圆
:
上点
,过
作两直线分别交
于点
,
,当点
,
关于坐标原点
对称且直线
,
斜率存在时,有
.
(1)求椭圆
的标准方程;
(2)若直线
,
关于直线
对称,当
面积最大时,求直线
的方程.
同类题3
已知椭圆
的左、右焦点分别是
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
两个不同点,证明:直线
于
的交点在一条定直线上.
同类题4
如图,菱形
的面积为
,斜率为
的直线
交
轴于点
,且
,以线段
为长轴,
为短轴的椭圆与直线
相交于
两点(
与
在
轴同侧).
(1)求椭圆的方程;
(2)求证:
与
的交点在定直线
上.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围