刷题首页
题库
高中数学
题干
已知中心在原点,焦点在坐标轴上的椭圆
的方程为
它的离心率为
,一个焦点是(-1,0),过直线
上一点引椭圆
的两条切线,切点分别是A、
A.
(1)求椭圆
的方程;
(2)若在椭圆
上的点
处的切线方程是
.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数
,使得求证:
(点C为直线AB恒过的定点).若存在
,请求出,若不存在请说明理由
上一题
下一题
0.99难度 解答题 更新时间:2015-06-29 05:04:01
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
1(
a
>
b
>0)的离心率为
,短轴一个端点到右焦点的距离为3
.
(1)求椭圆
C
的方程;
(2)若直线
y
=
x
﹣1与椭圆
C
交于不同的两点
A
、
B
,求|
AB
|.
同类题2
已知椭圆
:
(
)的离心率为
,以椭圆的四个顶点为顶点的四边形的面积为8.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,斜率为
的直线
与椭圆
交于
,
两点,点
在直线
的左上方.若
,且直线
,
分别与
轴交于
,
点,求线段
的长度.
同类题3
已知椭圆
的短半轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)过右焦点
作直线
交椭圆
C
于
,
两点,若
,求直线
的方程.
同类题4
已知椭圆
:
的离心率为
,且过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设直线
:
与椭圆
相交于
、
两点,且直线
,
,
的斜率依次成等比数列,求直线
的斜率.
同类题5
椭圆C:
(a>b>0)的离心率为
,P(m,0)为C的长轴上的一个动点,过P点斜率为
的直线l交C于A、B两点.当m=0时,
(1)求C的方程;
(2)求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题