刷题首页
题库
高中数学
题干
已知椭圆
的离心率
,一个焦点为
.
(1)求椭圆的方程;
(2)设
是椭圆与
轴负半轴的交点,过点
作椭圆的两条弦
和
,且
.
(i)直线
是否过定点,如果是求出该点坐标,如果不是请说明理由;
(ii)若
是等腰直角三角形,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2016-05-25 03:51:44
答案(点此获取答案解析)
同类题1
设椭圆
的左右焦点分别为
,离心率
,点
在直线
的左侧,且
F
2
到
l
的距离为
.
(1)求
的值;
(2)设
是
上的两个动点,
,证明:当
取最小值时,
.
同类题2
已知椭圆
的中心在坐标原点,焦点在
轴上,离心率为
,过椭圆
上一点
,作
轴的垂线,垂足为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,且
,求直线
的方程.
同类题3
椭圆c:
(a>b>0)的离心率为
,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.
同类题4
已知椭圆
:
的离心率
,且直线
与椭圆
有且只有一个公共点
.
(1)求椭圆
的标准方程;
(2)设直线
与
轴交于点
,过点
的直线
与椭圆
交于不同的两点
,若
,求实数
的取值范围.
同类题5
已知F
1
,F
2
分别为椭圆C:
的左焦点.右焦点,椭圆上的点与F
1
的最大距离等于4,离心率等于
,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F
2
MN;
(1)求椭圆的标准方程
(2)求圆E半径的最大值
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题