刷题首页
题库
高中数学
题干
椭圆
的离心率
,过右焦点
的直线
与椭圆
相交
于
、
两点,当直线
的斜率为
时,坐标原点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)椭圆
上是否存在点
,使得当直线
绕点
转到某一位置时,有
成立?若存在,求出所有满足条件的点
的坐标及对应的直线方程;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2011-11-15 09:45:00
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,直线
经过椭圆
的左顶点
.
(1)求椭圆
的方程;
(2)设直线
(
)交椭圆
于
两点(
不同于点
).过原点
的一条直线与直线
交于点
,与直线
分别交于点
.
(ⅰ)当
时,求
的最大值;
(ⅱ)若
,求证:点
在一条定直线上.
同类题2
已知椭圆
的左、右焦点分别为
,点
是椭圆上任意一点,
的最小值为
,且该椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上不同的两点,且
,若
,试问直线
是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.
同类题3
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.
同类题4
已知椭圆
:
过点
,上、下焦点分别为
、
,
向量
.直线
与椭圆交于
两点,线段
中点为
.
(1)求椭圆
的方程;
(2)求直线
的方程;
(3)记椭圆在直线
下方的部分与线段
所围成的平面区域(含边界)为
,若曲线
与区域
有公共点,试求
的最小值.
同类题5
已知椭圆
C
:
的一个顶点为
,且经过点
求椭圆
C
的方程;
过点
A
作斜率为
的直线
l
交
C
于另一点
D
,交
y
轴点
E
,
P
为线段
AD
的中点,
O
为坐标原点,是否存在点
Q
满足对于任意的
都有
?若存在,求出点
Q
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题