刷题首页
题库
高中数学
题干
椭圆
的离心率
,过右焦点
的直线
与椭圆
相交
于
、
两点,当直线
的斜率为
时,坐标原点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)椭圆
上是否存在点
,使得当直线
绕点
转到某一位置时,有
成立?若存在,求出所有满足条件的点
的坐标及对应的直线方程;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2011-11-15 09:45:00
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率
,且椭圆过点
(1)求椭圆
的标准方程;
(2)设直线
与
交于
、
两点,点
在椭圆
上,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
同类题2
已知椭圆
的短轴长为
,右焦点
与抛物线
的焦点重合,
为坐标原点
(1)求椭圆
的方程;
(2)设
、
是椭圆
上的不同两点,点
,且满足
,若
,求直线
的斜率的取值范围.
同类题3
椭圆
的离心率为
,
,
是椭圆
C
的短轴端点,且
,点
M
在椭圆
C
上运动,且点
M
不与
,
重合,点
N
满足
,
.
(1)求椭圆
C
的方程;
(2)求四边形
面积的最大值.
同类题4
已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦长为
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
交于
两点,且
,若存在,求直线
的方程;若不存在,说明理由.
同类题5
如图,设椭圆
两顶点
,短轴长为4,焦距为2,过点
的直线
与椭圆交于
两点.设直线
与直线
交于点
.
(1)求椭圆的方程;
(2)求线段
中点
的轨迹方程;
(3)求证:点
的横坐标为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题