刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,
为椭圆的左右焦点,
;
分别为椭圆的长轴和短轴的端点(如图) .若四边形
的面积为
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)抛物线
的焦点与椭圆
的右焦点重合,过点
任意作一条直线
,交抛物线
于
两点. 证明:以
为直径的所有圆是否过抛物线
上一定点.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-20 09:26:27
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,
为短轴的一个端点且
(其中
为坐标原点).
(1)求椭圆的方程;
(2)若
、
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
、
的交点,若存在,求出点
的坐标;若不存在,说明理由.
同类题2
如图,
为椭圆
的左右焦点,
是椭圆的两个顶点,
,
,若点
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
两点,
两点的“椭点”分别为
,已知以
为直径的圆经过坐标原点
.
(1)求椭圆
的标准方程;
(2)试探讨
的面积
是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
同类题3
已知椭圆
:
的离心率为
,点
,
分别为椭圆
的左、右顶点,点
在
上,且
面积的最大值为
(1)求椭圆
的方程;
(2)设
为
的左焦点,点
在直线
上,过
作
的垂线交椭圆
于
,
两点.证明:直线
平分线段
.
同类题4
已知椭圆
的离心率为
,且圆
的圆心在椭圆
上.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
只有一个公共点
,且与直线
交于点
,问
轴上是否存在点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
同类题5
已知椭圆C:
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F
1
,F
2
为顶点的三角形周长是4+2
,且∠BF
1
F
2
=
.
(1)求椭圆C的标准方程;
(2)若过点Q(1,
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题